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E F F E C T  OF THE M O L E C U L A R  M A S S  O N  T H E  S H E A R  A N D  

L O N G I T U D I N A L  V I S C O S I T Y  O F  L I N E A R  P O L Y M E R S  

I. 1~. Golovicheva,  S. A. Zinovich, and G. V. Pyshnogra i  UDC 532.135 

The effect of the molecular mass of a polymer sample on the dependence of the stationary 
viscosity on the velocity gradient upon simple shear and uniaxial tension is studied. The model 
of the dynamics of a suspension of noninteracting dumbbells in the anisotropic medium is used. 
The theoretical results show that the asymptotic behavior of the shear viscosity does not depend 
on the molecular mass and corresponds to experimental data. 

The  s tudy of the technological processes of polymer processing is an important  practical problem whose 
solution requires a mathematical  fornmtation of the behavioral  laws of polymer fluids. In mathematical  
modeling of the flows of linear-polymer solutions and melts, the greatest difficulties are connected with 
nonlinear effects. For their description it is necessary to obta in  a rheological constitutive relation and check 
its correspondence to the real flows of polymer fluids. Th e  rheological constitutive relation has already been 
formulated by Altukhov and Pyshnograi  [1, 2], and Kulicke and Wallbam calculated the simple stat ionary 
shear flow and their results agree with experimental da ta  [3]. The indicated relation was derived as a zero 
approximation of the more general rheological constitutive relation with respect to small parameters related 
to the reaction of the macromolecular chain and the internal  viscosity [4, 5]; therefore, this relation needs 
to be additionally substantiated. AVe now construct a rheological zero-approximation model by a different 
method and study the effect of the molecular mass and concentrat ion of the polymer on its parameters. 

Rheological  C o n s t i t u t i v e  R e l a t i o n .  We use the microstructural approach that permits us to 
establish a relationship between the macro and microeharacteristics of a polymer system [6, 7]. In the theory 
of polymer viscoelasticity, a monolnolecular approximation, in which one inacromolecule moving in an effective 
medium formed by a solvent and other macromolecules is considered instead of a set of macromolecules in the 
solvent volume, is the most efficient. To study relatively slow motions, one can use the Kargin-Slonimskii- 
Rouse model. In this model, the macromolecular dynamics is simulated by the motion of N + 1 centers of 
friction (beads) connected sequentially by elastic forces (springs), and the equations of the dynamics of a 

macromolecule have the form 

d 
u? = + + (1) 

where m is the mass of a bead, u~ is the velocity of a part icle with number a, P/~ is the force of hydrodynamic 
entrainment,  Q~ is the elastic force, and (I)~ is a random (Brownian) force. 

I t  is noteworthy that  the application of this approach leads to rheological constitutive relations of 
different complexity (see the review of publications in [6, 7]). The simplest rheological model [1, 2] allows 
one to simulate the stat ionary viscosimetric flows of l inear-polymer solutions and melts qualitatively and 
quantitatively. We now consider it in more detail. We simulate the dynamics of a macromolecule by an 
elastic dumbbell  that corresponds to the slowest relaxational process of a polymer chain. 
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In the inertia-free case (rn = 0), the equations of the dynamics of a macromolecule (1) in the laboratory 
coordinate system have the form 

, -1  , ,.,, " - 2 T l t ( ~ l ( r J  ' - rlj) + s i j  , j "  (2) " '  - 2 T # ~ 6 ' ( ' ~  - "2) + ~ij  f j ,  ' i  I'i -~ b' i jrj  = le i jr j  ( - l  f t t  

Here r~ and r~' are the i th Cartesian coordinate of the radius vector of the first and second beads, respectively, 
2 T #  is the elasticity coefficient, T is the temperature in energy units, # is the proportionality coeffi~;ient, r 

is the tensor coefficient of friction, ui j  = O v i / O x j  is the velocity-gradient tensor, vi  is the i th component of 
tim velocity vector, f/P and f~' are the i th  components of the vector of a random force (for the first and second 
beads, respectively), whose statistical properties are determined from an appropriate fluctuation-dissipative 
relation. 

If the anisotropy of the polymer system is determined by the symmetric tensor a i j ,  for the friction 
tensor ~ij we use the expression [2] 

~ij -= B ; ( S i j  + 3~3(aij - ( a u / 3 ) S i j )  + ~ a l l S i j )  - 1 .  (3) 

Here ~ is the friction coefficient of the beads in a "monomerie" fluid (for spherical particles, we have ~ = 67rRos, 
where R is tile particle radius and r is the viscosity of the solvent), B is the measure of amplification of 
the friction coefficient,/3 and ~e are the scalar anisotropy coefficients that  take into account, respectively, the 
isotropic and anisotropic contributions to the dependence of ~ij  on aij, and 5ij  is the Kroneeker symbol. 

We pass to the new coordinates 

Pi = (rl - "7) /v~,  pO = (rl + "i ' ) /vS- (4) 

The coordinate p0 describes the motion of the center of gravity of a dumbbell and Pi is the relative motion 
of the beads. Then, in coordinates (4), Eqs. (2) take the form 

= - 4 T # r  + f i ,  = + f o .  (5) 

We derive equations for the correlation moment Yik = (P iPk ) ,  where averaging is performed over all possible 
realizations of random force f .  Differentiating Yik with respect to t ime and using (5), we have 

d 
dt, Yik = u i j y j k  + t l k jY j i  -- 4 T # ~ j l Y j k  -- 4 T # ~ I y j i  + ( f i P k }  + ( f k P i ) .  (6) 

The desired correlation moments ( f i P k )  can be found from an appropriate fluctuation-dissipative relation; 
however, there is a different method. The equilibrium (u ik  = 0) value of the correlation moment Yik w a s  

found in [7]: y ~  k = 5 i k / ( 4 # ) .  In addition, Eqs. (6) are linear in Y,:k; therefore, in terms containing no 
y0 velocity-gradient tensor as a factor, we should replace Yik by (Yik -- ' ik)" As a result, we obtain 

We note tha t  the tensor Yik describes the form and dimensions of a macromolecular sphere. Since the 
anisotropic properties of a polymer medium are determined by the dimensions and form of macromolec- 
ular spheres, one can determine the anisotropy tensor aik  , which describes the deviation of a statistically 
nonequilibrium system from the equilibrium condition as follows: 

4p 1 
(PiP~:} 1 5ik = - ~  yia - 5ik.  (8) 

ai~ = (p'2)~ 3 -3 

Here <p2)e is the equilibrium value of the expression (p2) + (p22) + (p~). 
Using (3), we write Eqs. (7) in the form 

d 1 + ( ~  - ;~)X 
d-'t aik -- ~ i j a j k  --  V k j a j i  + 

Here ~-0 
I = a j j .  
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^/ik --  -~0 a i j a j k "  aik  = (9) 

7- 0 

= B~/(bT#)  is the initial relaxation time, 3'ik is the symmetrized velocity-gradient tensor, and 



For comparison of (9) with experimental  da ta ,  we need an expression for the stress tensor of a polymer  

system; this expression can be obtained by the s tandard  way [7] and has the following form in the generalized 

coordinates (4): 

O'ik : --PSik Jr- 4nT#(p ipk) .  

Here p is the hydrostatic pressure and n is the number  of macromolecules in a unit volume. 

Wi th  allowance for (8), this expression can be wri t ten in the form 

O'ik : -- P(~ik Jr- 3~70aik / TO, (10) 

where ~0 = nT~'o is the initial value of the shear-viscosity coefficient. 
Thus,  expressions (9) and (10) form a rheological constitutive relat ion of a nonlinear anisotropic vis- 

coelastic fluid with the parameters  r0, ~?0, ~e, and t3, which in turn should depend on the molecular mass  of a 

polymer  M and its concentration c. The dimensional  parameters  r0 and ~0 are est imated by the formulas [1] 

, 7"o= n T '  

where c* and M* are certain constants. 

The  induced-anisotropy parameters  w and fl obviously depend nei ther  on the molecular mass  nor the 
concentrat ion [1, 2]. To check this, we consider sys tem (9), (10) for a s t a t ionary  shear flow and a s ta t ionary  

flow of uniaxial tension. 
S t a t i o n a r y  S h e a r  F low.  We study the nonlinear effects in a s t a t ionary  shear flow when the  velocity- 

gradient tensor has the form 

0 v12 0 ]  
[v~j] = o 0 o 

0 0 0 

From Eqs. (9) and (10), we derive the system of algebraic equations 

a , ,  = 2TNSa 2 - -  + = + 
(12) 

a12 = ~ S + rNSa22 -- 3/3rNal2(all + a22), 

where 7,~ = 1/(1 + (m - / 3 ) I ) ,  I = a l l  + ri22, and S = ~'ov12. In this case, the  behavior  of the polymer  sys tem 

is characterized by the shear viscosity T! and by the first N1 and second N2 differences between the normal  

stresses: 

(/12 3'170ai2 3770 3~10 
r / =  - - -  N1 - a l l  -- 0"22 ----- (al l  -- a22), N2 ---- 0"22 - 0"33 = - -  (a22 - a33). 

vl2 S ' To TO 

The solutions of system (12) are determined by the values of the pa ramete r s  ~e and/3, whose influence 

on the form of the viscosimetric functions ~7, N1, and N2 is studied in [3, 8]. I t  is known from experiments  
that ,  for large shear velocities, the values of r/(vi2) do not depend on the molecular  mass: 

~(v12)=k-~2,  T0Ul :>>I ,  k , , ~ M  ~ ( 0 < a < 1 . 5 ) .  (13) 

Let us analyze conditions (13) by choosing appropr ia te  values of  ee and /3. In the calculations, the 

concentration c/c* was assumed to be equal to 1, and the vahies of the molecular  mass M / M *  were assumed 
to be equal to V~6, ~1-0, 1 and 770(c*, M*) = 1. Figure 1 shows the effect of the parameters  ,e and /3  on the 

dependence of the stat ionary shear viscosity ~/rl0 on the shear velocity vi2 and the molecular mass (curves 
1 correspond to M / M *  = vfi--0, curve 2 to M / M *  : r and curves 3 to M / M *  = 1). As is seen from Fig. 

1, for large vi2 the values of ~ for various molecular  masses differ in the case where ge = 0.3 and /3 = 0.1 
(dashed curves), and coincide in the case where ae = 0.3 and/3  = 0.2 (solid curves). The other values of ze 

correspond to other values of 3. Therefore, there  is a functional dependence between ae and/3,  which can 
be determined from the condition that  the asympto t ic  behavior of the s ta t ionary  shift viscosity does not 
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TABLE 1 

Sample number 
M- 10 -3 

Fig. 3 [ Fig. 5 

200 ] 327 
350 467 
517 687 
813 805 

7o, Pa 

Fig. 3 

2.8.102 
1.75.103 
8.2.103 
4.7.104 

" s e c  

Fig. 5 

9- 103 
5.104 

1.4- 105 
6.105 

TO~ 

Fig. 3 

0.33 

288.25 

s e e  

Fig. 5 

0.84 
6.64 
27.4 
137.4 

I 

0.6 fl 

depend on the molecular mass of a polymer. When ~e is varied from 0 to 1, the corresponding values of/3 are 
obtained (points in Fig. 2). One can see that the dependence ae(/3) can be described quite correctly by the 
linear function 

ae = 1.2/3- (14) 

The  theoretical dependences were compared with the experimental da ta  of  [8], where the dependences 
of ~ and N oil ~12 were obtained for solutions of linear polybutadiene of different molecular mass at T = 298 K. 
The  molecular characteristics and rheological parameters  of the solutions, which correspond to Fig. 3, are 
given in Table 1. The concentration of the samples is the same (c = 6.76%). Th e  value of 70 was determined 
from relation (11). 

Figure 3a and b shows the shear viscosity 'q and the first difference between the normal stresses N1 
versus the shear velocity r'12 for ae = 0.07 and/3  = 0.05. As is seen, the theoretical  curves agree with the 
experimental  data. This makes it possible to conclude that  the rheological zeroth-order approximation is 
applicable to the description of a stationary shear flow in quite a broad range of shear velocities. In this 
model, the parameters  a~ and/3 depend weakly on the molecular mass. 

S t a t i o n a r y  F low  of  Un iax ia l  Tens io n .  The  velocity-gradient and stress tensors have the diagonal 
fo rm 

[l]ij ] = 0 -/211/2 0 , [Tij ] -~ 0 
0 0 - u u / 2  0 

Here a is the tensile stress and rij is the deviatoric tensile tensor. 

o o] 
- a / 3  0 . 

0 -~/3  

We now search for the longitudinal viscosity as a function of a: A(cr) = o'/un. From the rheological 
consti tut ive relations (9) and (10), we obtain 

3/3a22 + S/3 a n ( 1  + (ze - / 3 ) I )  + 33a21 
a22 = ~ ---- 1 + (ze - / 3 ) I  + S '  2au + 2/3 ' (15) 

all  ----a22+a*/3, I = a l l + 2 a 2 2 ,  
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where S = r0ult is the dimensionless tension velocity and a* = (ro/qo)a is the dimensionless tensile stress. 
System (15) is a nonlinear system that was solved by the method of successive approximations and by 

tile modified Newton method for verification. 
We study the effect of the induced-anisotropy parameters ee and ~ on tim dependence A(~). With  

growth of a, the longitudinal viscosity tends to limiting values, which increase as ~e and /J decrease. The 
calculation results for/3 = 0.05 are given in Fig. 4. 

Figure 5 shows the longitudinal viscosity A versus the tensile stress a for polymers of different molecular 
mass and the experimental data of [9] (points), where polyethylene melts are examined at T = 423 K. The 
molecular characteristics and rheological parameters  of the melts tha t  correspond to Fig. 5 are listed in 

Table 1. 
The parameters of the rheological model were estimated from formulas (11), and the values of ~e and/3 

[with allowance for (14)] were selected so that  the theoretical dependences corresponded to the experimental  

data. 
The theoretical curves in Fig. 5 agree with the experimental data.  and one can explain the divergences 

in the region 10 ~ < a < 105 by quite large values of polydispersibility of the samples used in [9]. 
It is known that  as the polydispersibility increases, the nonlinear properties of a polymer are mani- 

fested in the field of smaller a (or in the region of ul2 for shear). Owing to the use of the monomolecular 
approximation, this model represents the model of a monodisperse polymer  and, consequently, does not de- 
scribe the effects associated with polydispersibility. Probably, the application of the microstructural approach 
in deriving Eqs. (9) and (10) will allow us to describe these effects. Indeed, the dependences of the model 
parameters on the molecular mass of a polymer can be considered true,  and the subsequent procedure will 
consist of averaging of the results with the use of a molecular-mass distribution. 
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Thus, tim dependences (11) and the resulting relation (14), which were earlier used for stationary shear, 
remain valid for the flows of uniaxial tension; this shows the universality of this approach and the possibility 
of using the rheological model (9), (10) in describing the more complicated flows of linear-polymer solutions 
and melts, for example, the flows with a free surface, and a study of secondary flows, when the nonlinear 
effects play an important role. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 99-15- 
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